Current Issue : October-December Volume : 2022 Issue Number : 4 Articles : 5 Articles
Several applications of nanofiber-based systems are based on their corresponding functionality-related properties, which often cannot be satisfied by a fiber web with a monolithic structure because of the various physicochemical properties and amounts of embedded compounds. Therefore, one of the main directions in the development of fiber systems is creating core–shell type complex fiber structures that can provide application-specific properties to the fiber matrix. The present study aimed to formulate levocetirizine-loaded core–shell type hydrophilic polymer-based fibrous systems. The core phase contained the antihistamine levocetirizine, while the permeation enhancer (Na-taurocholate), the local pH regulator (citric acid), and the cyclodextrin used as a taste masking agent were included in the shell phase of the fibrous formulation. Scanning electron microscopy images indicated that a randomly oriented homogeneous fibrous structure was obtained, while the Raman mapping and chemometric analysis confirmed the partially formed core–shell structure. A fast release rate of the antihistamine drug from the complex structural fibrous system was obtained (within 1 min complete dissolution can be observed) due to its increased surface area to volume ratio and its more favorable wettability properties, which consequently allows for more erosion. The masking properties against the unpleasant bitter taste of API of the formulated complex nanostructure were confirmed by the results of the electronic tongue. The formulated complex nanostructure enabled fast and complete release of the API, providing a potential enhancement in the rate and extent of absorption while masking the unpleasant taste of levocetirizine, which has a high impact on the patient adherence. All in all, the results show that the developed orally dissolving fibrous web formulation can be a potential alternative to the commercially available orally disintegrating tablets....
For the prolonged, controlled delivery of systemic drugs, we propose an implantable drug-delivery chip (DDC) embedded with pairs of a microchannel and drug-reservoir serving as a drug diffusion barrier and depot, respectively. We pursued a DDC for dual drugs: a main-purpose drug, diclofenac (DF), for systemic exposure, and an antifibrotic drug, tranilast (TR), for local delivery. Thus, the problematic fibrotic tissue formation around the implanted device could be diminished, thereby less hindrance in systemic exposure of DF released from the DDC. First, we separately prepared DDCs for DF or TR delivery, and sought to find a proper microchannel length for a rapid onset and sustained pattern of drug release, as well as the required drug dose. Then, two distinct DDCs for DF and TR delivery, respectively, were assembled to produce a Dual_DDC for the concurrent delivery of DF and TR. When the Dual_DDC was implanted in living rats, the DF concentration in blood plasma did not drop significantly in the later periods after implantation relative to that in the early periods before fibrotic tissue formation. When the Dual_DDC was implanted without TR, there was a significant decrease in the blood plasma DF concentration as the time elapsed after implantation. Biopsied tissues around the Dual_DDC exhibited a significant decrease in the fibrotic capsule thickness and collagen density relative to the Dual_DDC without TR, owing to the effect of the local, sustained release of the TR....
Nanoparticles of metal–organic frameworks (MOF NPs) are crystalline hybrid micro- or mesoporous nanomaterials that show great promise in biomedicine due to their significant drug loading ability and controlled release. Herein, we develop porous capsules from aggregate of nanoparticles of the iron carboxylate MIL-100(Fe) through a low-temperature spray-drying route. This enables the concomitant one-pot encapsulation of high loading of an antitumor drug, methotrexate, within the pores of the MOF NPs, and the collagenase enzyme (COL), inside the inter-particular mesoporous cavities, upon the formation of the capsule, enhancing tumor treatment. This association provides better control of the release of the active moieties, MTX and collagenase, in simulated body fluid conditions in comparison with the bare MOF NPs. In addition, the loaded MIL-100 capsules present, against the A-375 cancer cell line, selective toxicity nine times higher than for the normal HaCaT cells, suggesting that MTX@COL@MIL-100 capsules may have potential application in the selective treatment of cancer cells. We highlight that an appropriate level of collagenase activity remained after encapsulation using the spray dryer equipment. Therefore, this work describes a novel application of MOF-based capsules as a dual drug delivery system for cancer treatment....
Localized drug delivery systems (LDDS) have gained great interests because they can directly treat the tumors and minimize systematic toxicity, and maximize drug action by controlling release precisely at the tumor site. However, the resistance of the non-specific adsorption of biomolecules is also important to alleviate the inflammatory reactions and avoid the decrease in performance of LDDS. In this study, we develop a near infrared (NIR) light-triggered nanofibrous delivery system consisting of zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine)-bpoly( ε-caprolactone) (PMPC-b-PCL) encapsulated with indocyanine green (ICG) and doxorubicin (DOX) for dual photothermal therapy and chemotherapy. The nanofibrous mat shows hydrophilic characteristics and good antifouling performance. Under mild NIR irradiation, ICG could convert NIR light into thermal energy that elevates the surrounding temperature above 45 ◦C. This thermal energy also markedly accelerates the DOX release from the nanofibrous mat due to softening of the nanofibers, indicating the drug release could be controlled and switched on/off by light-triggering. Moreover, this light-triggered thermal energy and releasing behavior contribute to enhancing the cell lethality. Intracellular DOX distribution confirms the more drugs release upon light irradiation. All results demonstrate the developed light-triggered drug release nanofibers as LDDS are biocompatible and antifouling as well as has the superior combinational chemotherapy/photothermal therapy....
Nanoparticles (NPs) have a tremendous potential in medicinal applications, and recent studies have pushed the boundaries in nanotherapy, including in osteoarthritis treatments. The aim of this study was to develop new poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) surfaces decorated with hyaluronic acid (HA) to enhance targeted drug specificity to the osteoarthritic knee joint. HA was selected since it binds to specific receptors expressed in many cells, such as the cluster determinant 44 (CD44), a major receptor of chondrocytes, and because of its function in the synovial fluid (SF), such as maintenance of high fluid viscosity. The PLGA polymer was grafted to sodium hyaluronate using dimethoxy-PEG (PLGA-HA) and compared with control PLGA NPs (not grafted). NPs were characterized by 1H-NMR and IR spectroscopy. Then, near-infrared (NIR) dye and gold (20 nm) were encapsulated in the formulated NPs and used to access NPs’ performance in in vitro, in vivo, and ex vivo experiments. To test the NPs’ CD44 receptor specificity, an antibody assay was performed. All NPs presented a size in the range viable for cell-uptake, no cytotoxicity to chondrocytes was registered. Although all the NPs had a high capacity to be absorbed by the cells, PLGA-HA NPs showed significantly higher affinity towards the chondrocytic C28/I2 cell line. In conclusion, PLGA NPs grafted to sodium hyaluronate showed increased binding to cartilage cells and tissue and enhanced accumulation at the target site. Thus, this study presents a safe drug-delivery system with improved receptor specificity, which may represent an advantageous alternative to current nanotherapies....
Loading....